DISTRICT LEVEL I PUC ANNUAL EXAMINATION, FEB-2020

Time: 3 Hrs. 15 Mins.

Sub: PHYSICS (33)

Max. Marks: 70

General Instructions:

- 1. All parts are compulsory.
- 2. Draw relevant diagram / figure wherever necessary.
- 3. Numerical problems should be solved with relevant formulae

Part - A

I. Answer ALL the following questions:

 $10 \times 1 = 10$

- 1. What is basis?
- 2. What is unit vector?
- 3. When does the work done by a force negative?
- 4. Define radius of gyration.
- 5. Name the natural satellite of the earth.
- Define stress.
- 7. What is streamline flow?
- Give the principle of calorimetry.
- 9. How does the average kinetic energy of a gas molecule vary with absolute temperature?
- 10. Give the physical significance of zeroth law of thermodynamics.

Part - B

II. Answer any FIVE of the following questions:

 $5 \times 2 = 10$

- Mention any two fundamental forces in nature.
- 12. Write the two applications of dimensional analysis.
- 13. Distinguish between path length and displacement.
- 14. Write the expression for range of the projectile. State the condition for maximum range of a projectile.
- 15. Define terms: (a) Impulsive force and (2) Impulse of a force.
- 16. State and explain Newton's law of gravilation.
- 17. Where is the potential energy of a body maximum and minimum?
- 18. What is Doppler effect? Mention any one application of Doppler effect.

Part - C

III. Answer any FIVE of the following questions:

 $5 \times 3 = 15$

- 19. Derive an expression for centripetal acceleration.
- 20. Mention any three methods of reducing friction.
- Obtain an expression potential energy of a spring.
- 22. Mention three types of moduli of elasticity.
- 23 State Pascal's law. Mention two applications of Pascal's law.
- 24. State that $\alpha_r = \frac{1}{T}$ for an ideal gas.

- 25. Write the three assumptions of kinetic theory of gases.
- 26. Give the Newton's formula for the speed of sound in a gas Explain Laplace's correction to Newton's formula.

Part - D

IV. Answer any TWO of the following questions:

 $2 \times 5 = 10$

- Obtain the equation for trajectory of a projectile.
- State and prove work energy theorem for a constant force.
- 29. Define torque. Derive the relation between lorque and angular momentum.

V Answer any TWO of the following questions:

 $2 \times 5 = 10$

- 30. Obtain an expression for acceleration due to gravity at a height 'h' from the surface of the earth.
- 31. What is heat engine? Explain its working principle. Define efficiency of heat engine.
- Derive an expression for time period of oscillations of a simple pendulum.

Answer any THREE of the following questions:

- 33. A car moving along a straight highway with a speed of 126 kmph is brought to rest within a distance of 200m. Calculate the retardation of the car, (assumed to be uniform). How long does it take for the car to stop?
- 34. a cricket ball moving horizontally with a velocity of $12 ms^{-1}$ is brought to rest by a player in 0.1s if the cricket ball weighs 0.15kg, calculate impulse of a force and the average force applied
- 35. A rope of negligible mass is wound round a hollow cylinder of mass 3kg and radius 0.4m. What is the angular acceleration of the cylinder of the rope is pulled with a force of 30N? What is the linear acceleration of the rope? Assume that there is no slipping
- 36. A metal cylinder 0.628m long and 0.04m id diameter has one end in boiling water at 100°C and the other end in melting ice. The coefficient of thermal conductivity of the metal is $378Wm^{-1}K$ Latent heat of ice is $3.36 \times 10^{3} J K g^{-1}$. Find the mass of the ice that melts in one hour
- 37 A stone dropped from the top of a tower of height 300m splashes into water of a pond near the base of the tower. When is the splash heard at the top? Given that the speed of sound in air is $340 \, ms^{-1} [g = 9.8 \, ms^{-2}]$

පත්පපපපප

https://www.karnatakaboard.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भैजे और 10 रुपये पार्ये, Paytm or Google Pay से

https://www.karnatakaboard.com