Mid Term Exam Dec-2024 Subject: Mathematics (35)

Max. time: 3hr Max. Marks: 80

		P	ART - A					
I.	Answer all the mult	tiple choice questio	ns:	$(15 \times 1 = 15)$				
1. If A and B are two sets, then $A \cap (A \cup B)'$ equals								
	a) A	b) B	c) Ø	$d) A \cap B$				
2. Let $n(A) = 3$, $n(B) = 2$, then the number of relations from A to B is								
	a) 64	b) 8	c) 9	d) 32				
3. If A lies in the second quadrant and $3 \tan A + 4 = 0$, then the value of (2)								
$5\cos A + \sin A) = \underline{\hspace{1cm}}$								
	a) $\frac{-53}{10}$	b) $\frac{37}{40}$	c) $\frac{23}{10}$	d) $\frac{7}{10}$				
	4. The value of i^{57}	4	10	10				
		·	\ .					
	a) 0	/	c) –2 <i>i</i>	d) 2				
5. The solution of $x + \frac{x}{2} + \frac{x}{3} < 11$ is								
	a) $(-\infty, 6)$	b) (−∞, 6]	c) (6,∞)	d) [6,∞)				
	6. For any two posit							
	a) $AM \le GM$	b) $AM \ge GM$	$c) AM = \frac{3}{4} GM$	d) None of these				
	7. The point $(-3, 1, 1)$	2) lies in the octant						
	a) I	b) II	c) III	d) IV				
	8. Events A and B as							
	a) $P(A \cup B) = A$	c) $P(A \cap B) = P(A)$) = P(A) + P(B)					
	b) $P(A \cup B) = 0$	1	d) None of these					
	9. The letters of the	The letters of the word "SOCIETY" are placed at random in a row. The probability						
that three vowels occur together is								
	a) $\frac{1}{7}$	b) $\frac{2}{7}$	c) $\frac{3}{7}$	d) $\frac{4}{7}$				
	/	the point $(1, 2)$ and perpen	dicular to the line					
	a) $y - x + 1 =$	= 0	c) $y - x - 1 = 0$					
	b) $y - x + 2 =$	= 0	d) $y - x - 2 = 0$					
	11. If the focus of a parabola is $(0, -3)$ and its directrix is $y = 3$, then its equation is							
	a) $x^2 = -12y$	b) $x^2 = 12y$	c) $y^2 = -12x$	d) $y^2 = 12x$				
	12. The standard dev	iation of first 10 nat	ural numbers is:					
	a) 5.5	b) 3.87	c) 2.97	d) 2.87				
	13. The third term of	f a GP is 4. The prod	uct of first five terms is					
	a) 4^3	b) 4 ⁵	c) 4 ⁴	d) None of these				

In question no. 14 and 15, a statement of assertion is followed by a statement of reason is given. Choose the correct answer out of the following choices:

- (a) Assertion and reason both are correct, and reason is the correct explanation of assertion.
- (b) Assertion and reason both are correct, but reason is not the correct explanation of assertion.
- (c) Assertion is correct statement, but reason is wrong.
- (d) Assertion is wrong statement, but reason is correct.
- 14. Assertion: Coordinates (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.

Reason: Opposite sides of a parallelogram are equal and diagonals are not equal.

15. Assertion: $\lim_{x \to 0} \frac{\sin 5x}{\sin x} = 5$

Reason: $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

II. Fill in the Blanks

 $(5 \times 1 = 5)$

$$\left\{0, \frac{\sqrt{3}}{2}, \sqrt{3}, 1, \frac{1}{\sqrt{3}}, \frac{4}{\sqrt{3}}\right\}$$

- 16. If $\left(\frac{x}{3} + 1, y \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$ then the value of y is_____.
- 17. The value of $sin^2 \frac{5\pi}{12} sin^2 \frac{\pi}{12}$ is_____.
- 18. The slope of line making inclination 60° with the positive direction of x-axis is____.
- 19. The length of the latus rectum of the ellipse $3x^2 + y^2 = 12$ is_____.
- 20. The derivative of $x^2 4x + 4$ at x = 2 is _____.

PART - B

III. Answer any six questions

 $(2 \times 6 = 12)$

- 21. If $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{2, 4, 5, 6, 8\}$. Find A B and B A.
- 22. Let $A = \{1, 2\}$, $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have?
- 23. Prove that $\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} \tan^2 \frac{\pi}{4} = -\frac{1}{2}$
- 24. Express $(1-i)^4$ in a+ib form.
- 25. Solve the inequality $\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$ and show the graph of solution on number line
- 26. How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 6, 7 if no digit is repeated?
- 27. Expand $\left(x^2 + \frac{3}{x}\right)^4$ using Binomial Theorem.
- 28. The sum of first three terms of a G.P. is 16 and the sum of next three terms is 128. Find the sum of n terms of the GP
- 29. Find the equation of the line parallel to the line 3x 4y 2 = 0 and passing through the point (-2, 3)

- 30. Evaluate $\lim_{x \to 1} \left[\frac{x^{15} 1}{x^{10} 1} \right]$
- 31. Events E and F are such that P(not E or not F) = 0.25. State whether E and F are mutually exclusive.

PART - C

IV. Answer any six questions:

$$(6 \times 3 = 18)$$

- 32. If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A = \{2, 4, 6, 8\}$ and $B = \{2, 3, 5, 7\}$ Verify that $(A \cup B)' = A' \cap B'$
- 33. Find the domain and range of the following real function $f(x) = \sqrt{9 x^2}$
- 34. Prove that $\sin 3x = 3\sin x 4\sin^3 x$
- 35. Express the following in the form of a + ib: $\frac{5+i\sqrt{2}}{1-i\sqrt{2}}$.
- 36. If $\tan x = -\frac{5}{12}$, x lies in II quadrant, find the values of other five trigonometric functions
- 37. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11.
- 38. If A.M. and G.M. of two positive numbers 'a' and 'b' are 34 and 6 respectively. Find the numbers.
- 39. The vertices of a triangle are A (10, 4), B (-4, 9), and C (-2, -1). Find the equation of the altitude through A
- 40. Find the coordinates of the focus, the equation of the directrix and latus rectum of the parabola $y^2 = -8x$
- 41. Show that the points P(-2, 3, 5), Q(1, 2, 3) and R(7, 0, -1) are collinear.
- 42. Find the derivative of $y = \sin x$ with respect to x from first principle method.

PART - D

V. Answer any four questions:

$$(4 \times 5 = 20)$$

- 43. Define Modulus function. Draw the graph of it. Also write its domain and Range
- 44. Prove that $\frac{\sin 5x 2\sin 3x + \sin x}{\cos 5x \cos x} = \tan x$ https://www.karnatakaboard.com
- 45. A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of
 - i) Exactly 3 girls
 - ii) At least 3 girls
 - iii) At most 3 girls
- 46. State and prove 'Binomial Theorem' for positive integral index 'n'
- 47. If p and q are the lengths of perpendiculars from the origin to the line $x \cos \theta y \sin \theta = k \cos 2\theta$ and $x \sec \theta + y \csc \theta = k$, respectively, prove that $p^2 + 4q^2 = k^2$

48. Prove Geometrically that

$$\lim_{x\to 0} \frac{\sin x}{x} = 1, where x being measured in radians.$$

49. Calculate the mean deviation about the mean for the following data

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Obtained							
Number of	2	3	8	14	6	3	2
students							

- 50. A bag contains 9 discs of which 4 are Red, 3 are Blue and 2 are Yellow. The discs are similar in shape and size. A disc is thrown at random from the bag. Calculate the probability that it will be:
 - a) Red
 - b) Yellow
 - c) Blue
 - d) Not Blue
 - e) Either Red or Blue

PART - E

VI. Answer the following questions:

51. Prove geometrically that

$$cos(x + y) = cos x \cdot cos y - sin x \cdot sin y$$

OR

Derive the equation of ellipse in the standard form
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (6M)

52. Find the sum to 'n' terms of the sequence 8, 88, 888,

OR

Find the derivative of
$$\frac{\cos x}{1+\sin x}$$
 w.r.t x . (4M)